Glial-derived adenosine modulates spinal motor networks in mice

نویسندگان

  • Emily C. Witts
  • Kara M. Panetta
  • Gareth B. Miles
چکیده

The activation of purinergic receptors modulates central pattern generators controlling rhythmic motor behaviors, including respiration in rodents and swimming in frog tadpoles. The present study aimed to determine whether purinergic signaling also modulates the mammalian locomotor central pattern generator. This was investigated by using isolated spinal cord preparations obtained from neonatal mice in which locomotor-related activity can be induced pharmacologically. The application of either ATP or adenosine led to a reduction in the frequency of locomotor activity recorded from ventral roots. ATP had no effect when applied in the presence of both the adenosine receptor antagonist theophylline and the ectonucleotidase inhibitor ARL67156, demonstrating that the effects of ATP application result from the breakdown of ATP to adenosine and subsequent activation of adenosine receptors. The application of theophylline or the A(1)-specific antagonist cyclopentyl dipropylxanthine, but not the A(2A)-receptor antagonist SCH58261, caused an increase in locomotor burst frequency, demonstrating that endogenously derived adenosine activates A(1) receptors during locomotor network activity. Furthermore, theophylline had no effect in the presence of the ectonucleotidase inhibitor ARL67156 or the glial toxins methionine sulfoximine or ethyl fluoracetate, suggesting that endogenous adenosine is derived from ATP, which is released from glia. Finally, adenosine had no effect on slow rhythmic activity recorded upon blockade of all inhibitory transmission, suggesting that adenosine may act via the modulation of inhibitory transmission. Together, these data highlight endogenous purinergic gliotransmission, involving activation of A(1) receptors, as an important intrinsic modulatory system controlling the frequency of activity generated by spinal locomotor circuitry in mammals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine

Despite considerable evidence that glia can release modulators to influence the excitability of neighbouring neurons, the importance of gliotransmission for the operation of neural networks and in shaping behaviour remains controversial. Here we characterise the contribution of glia to the modulation of the mammalian spinal central pattern generator for locomotion, the output of which is direct...

متن کامل

The Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury

Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...

متن کامل

Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice

Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934...

متن کامل

Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

Spinal neuronal networks are essential for motor function. They are involved in the integration of sensory inputs and the generation of rhythmic motor outputs. They continuously adapt their activity to the internal state of the organism and to the environment. This plasticity can be provided by different neuromodulators. These substances are usually thought of being released by dedicated neuron...

متن کامل

Loss of AMP-Activated Protein Kinase Induces Mitochondrial Dysfunction and Proinflammatory Response in Unstimulated Abcd1-Knockout Mice Mixed Glial Cells

X-linked adrenoleukodystrophy (X-ALD) is caused by mutations and/or deletions in the ABCD1 gene. Similar mutations/deletions can give rise to variable phenotypes ranging from mild adrenomyeloneuropathy (AMN) to inflammatory fatal cerebral adrenoleukodystrophy (ALD) via unknown mechanisms. We recently reported the loss of the anti-inflammatory protein adenosine monophosphate activated protein ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 107  شماره 

صفحات  -

تاریخ انتشار 2012